

GRACE Satellite Gravity Measurements and Geophysical Applications

Jianli Chen

(陈剑利)

Ph.D., Senior Research Scientist

Center for Space Research, University of Texas at Austin

上海天文台天文空间技术应用及全球变化实验室

GRACE Satellite Gravity Measurements and Geophysical Applications

Progress in Gravity Field Resolutions

Decades of tracking to geodetic satellites

111 days of GRACE data

Challenges of GRACE Data Processing

GRACE and Global Climate Change

Hydrosphere

- Land water storage
- Precipitation
- Evapotranspiration
- Runoff
- **Ground water**
- Droughts
- Floodings
- Ocean
 - Global sea level change
 - Ocean heat content variation
- **Cryosphere**
 - Polar ice sheets mass balance
 - Mountain glaciers mass balance

Global Water Storage Change from GRACE

Annual Runoff Estimates in Amazon Basin

Antarctic Ice Sheet Mass Balance From GRACE

The Antarctic ice sheet has a total area of ~ 14,000,000 km² and averaged ice sheet thickness of ~ 2.16 km, accounts for 90% of the world's ice and 75% of the world's fresh water resources, and has the potential to raise the global sea level by over 70 meters if completely melt.

Global long-term mass change rates from GRACE

GRACE Mass Rates (cm/yr), CSR RL04, Apr 02 - May 07

Based on 58 CSR RL04 monthly gravity solutions from April 2002 to May 2007.

GRACE-observed mass change rates (in cm/year of water height) over Antarctica, P4M6 + 300 km Gaussian smoothing.

(Please note the different color scales, $\pm 8 \text{ vs.} \pm 4$.)

PGR effects (in mass equivalent) over

Antarctica from the IJ05 PGR model,

P4M6 + 300 km Gaussian smoothing.

60°E

120%

3

4

Antarctic long-term ice mass change rates (GRACE - PGR)

Forward Modeling

- Step-1: To choose six regions (shaded) where GRACE data show prominent signals. In each region (on 1° x 1° grid), a trial mass rate (in units of km³/yr) is distributed uniformly. The remainder of the grid (outside Antarctica) retains GRACE mass rates. Therefore, spatial leakage from the 6 regions to areas outside Antarctica should be evident when comparing the model and GRACE rate maps. This is a variation of the forward modeling technique in our previous studies.
- Step-2: To convert the constructed mass rate grids into spherical harmonics.
- Step-3: To replicate procedures (used to transform GRACE data) to compute surface mass changes (no degree-1 terms, same truncation and same 2-steps filtering, ...).
- Step-4: To adjust model rates and region shapes until there is general agreement with the GRACE map. As a final constraint, we force model integrated mass rate for each region (sum over grid points with cosine of latitude weights within boundaries where magnitude exceeds 1 cm/year) to agree with the GRACE map.

Climate Change and Greenland Ice Loss

The Changing Climate & Greenland Ice Mass Change

RL01 - 3.5 Years (Apr 2002 - Nov 2005)

The Changing Climate & Greenland Ice Mass Change

2002.04 - 2008.09

cm/year (CSR 2002.04-2008.09, 300km+P4M6)

	-			- 1		1		ų.				
			1			1						
-12	-10	-8	-6	-4	-2	0	2	4	6	8	10	12

cm/year (equivalent water height change)

-6	-4	-2	0	2	4	6

The Changing Climate & Greenland Ice Mass Change

GRACE Time Series at 4 Selected Locations (A, B, C, D)

cm/year (CSR 2002.04-2008.09, 300km+P4M6)

	,							,				
			1.1					1	1.1			
-12	-10	-8	-6	-4	-2	0	2	4	6	8	10	12

GRACE Time Series at 4 Selected Grids (A, B, C, D)

The Changing Climate in Greenland

Excessive Groundwater Depletion in Northwest India

cm/yr (equivalent water height)

Excessive Groundwater Depletion in Northwest India

The 2009 Exceptional Flood in Lower Amazon

(Units: cm/year of equivalent water height)

GRACE TWS Rate Map

15

Units: cm/yr of water thickness

GRACE TWS Rate Map

Units: cm/yr of water thickness

GRACE Yearly TWS change (Yearly = Average from July of the previous year through June)

Units: cm of equivalent water thickness

Development of the exceptional 2009 Amazon flood from GRACE

GRACE observed monthly TWS anomaly (seasonal signal is removed)

Any other applications of GRACE?

Lianks

The Magic Blue Marble