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[1] High-degree and high-order spherical harmonics of time-variable gravity fields
observed by the Gravity Recovery and Climate Experiment (GRACE) gravity mission are
dominated by noise. We develop two smoothing methods that suppress these high-degree
and high-order errors with results superior to more commonly used Gaussian smoothing.
These optimized smoothing methods considerably improve signal-to-noise levels of
GRACE terrestrial water storage estimates relative to residual signal and noise over the
oceans and show significantly better spatial resolution and lower leakage error. On the
basis of analysis using an advanced land surface model, the equivalent spatial resolution
from these optimized smoothing estimates is about 500 km, compared to the roughly 800–
1000 km Gaussian smoothing that is required to suppress high-degree noise in the
GRACE fields.
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1. Introduction

[2] The Gravity Recovery and Climate Experiment
(GRACE) twin satellite gravity mission was launched in
March 2002, with a primary goal to measure Earth’s gravity
and changes with respect to time [Tapley et al., 2004a].
GRACE time-variable gravity data are being used to infer
mass load variations on the Earth surface [e.g., Wahr et al.,
1998, 2004; Tapley et al., 2004b]. However, variations in
GRACE high-degree Stokes coefficients are dominated by
noise, requiring spatial smoothing in order to derive useful
measures of surface mass or geoid height changes [e.g.,
Wahr et al., 1998; Chen et al., 2005a]. At global and basin
scales, Gaussian smoothing [Jekeli, 1981] is commonly
used to suppress high-degree noise in GRACE fields [e.g.,
Wahr et al., 1998, 2004; Tapley et al., 2004b]. Gaussian
smoothing is appropriate when the spatial distribution of
noise is isotropic, because the operation corresponds to
convolution over the Earth’s surface with a circularly
symmetric function. Although GRACE noise does not fully
meet this assumption, when the effective radius of the
smoothing is properly chosen (typically around 800–
1000 km), GRACE terrestrial water storage changes agree
fairly well with hydrological model estimates [e.g., Wahr et
al., 2004; Tapley et al., 2004b; Chen et al., 2005a, 2005b].
Chambers et al. [2004] and Chen et al. [2005c] demonstrate

that with proper Gaussian smoothing, GRACE estimates of
ocean mass variations agree remarkably well with nonsteric
global mean sea level changes derived from satellite altim-
eter observations.
[3] Two main limitations of Gaussian smoothing are that

(1) as effective radius increases, there is increased leakage
error associated with a limited range of spherical harmonics,
and (2) the Gaussian smoothing assigns isotropic weights in
the spatial domain or only degree-dependent weights in
spherical harmonics domain. These limit the utility of
GRACE in the study of water storage in small river basins
[Swenson and Wahr, 2002], though for the very largest
basins this is less of a problem [Wahr et al., 2004; Tapley et
al., 2004b; Chen et al., 2005b]. Errors in GRACE Stokes
coefficients are related to the polar orbit ground tracks
[Tapley et al., 2004b; Chen et al., 2005a], with a concen-
tration at high orders, producing longitudinal stripes in
unsmoothed maps of load variation, which suggests that
people will need a non-isotropic filter to more effectively
remove these non-isotropic noise. A recent study by Han et
al. [2005a] recognizes the high-order noise, and employs
order-dependent (or no-isotropic) smoothing. However,
smoothing of any sort may also influence estimated signal.
A recent study (J. L. Chen et al., Attenuation effects on
seasonal basin-scale water storage change from smoothed
GRACE time-variable gravity, submitted to Journal of
Geodesy, 2006, hereinafter referred to as Chen et al.,
submitted manuscript, 2006) shows that Gaussian smooth-
ing significantly affects basin-scale water storage estimates,
even for the largest river basins. For example, with 1000 km
Gaussian smoothing, seasonal magnitudes of GRACE water
storage estimates in the Amazon and Mississippi are re-
duced about 35%, and the phase of the annual change is also
affected. Thus one must either account for these effects
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using independent data (Chen et al., submitted manuscript,
2006) or develop another technique.
[4] Basin functions are sets of coefficients used to form a

linear combination of GRACE spherical harmonics to
estimate water storage changes within a specific basin.
Basin functions are designed using various criteria to
maximize spatial resolution of the basin, and minimize
effects of noise. Swenson and Wahr [2002] used a Lagrange
multiplier method to optimize basin functions, using the full
signal and error covariance matrices for azimuthally asym-
metric basins. Seo and Wilson [2005] developed dynamic
basin functions with time-variable weightings based on
climate models, and showed that this method works well
when good climate models are available. The dynamic basin
function concept can also be applied to global-scale water
storage estimates. An alternative approach to basin-scale
water storage estimates was described by Han et al. [2005b]
in which GRACE satellite-to-satellite tracking data are used
to directly estimate regional water storage change. This
method bypasses intermediate steps of estimating spherical
harmonic coefficients, and then linearly combining them
using basin functions. GRACE satellite-satellite tracking
data have recently become available in a public release,
inviting more studies with this approach.
[5] The objective of this study is to develop global

optimized variance-dependent smoothing techniques to be
used with GRACE time variable spherical harmonic
coefficients. The goals are to more effectively reduce
effects of high-degree and high-order noise, to minimize
attenuation of signal relative to conventional Gaussian
smoothing, and to yield maximum signal-to-noise ratio
(as defined later). We examine the variance spectrum of
GRACE spherical harmonic Stokes coefficients as a
function of degree and order, compare GRACE spectra
with those of advanced climate models, and develop
variance-dependent smoothing methods. Most atmospheric
and barotropic oceanic mass redistribution effects have
been removed from GRACE data in the GRACE deal-
iasing process [Bettadpur, 2003]. Thus GRACE data
mainly reflect contributions from terrestrial water storage
and snow/ice mass changes and the residual baroclinic
signals over the oceans [Wahr et al., 2004], plus mea-
surement errors and errors in the dealiasing (atmospheric,
oceanic, tide) models. This is confirmed by the observa-
tion that, after reasonable smoothing, GRACE surface
mass changes are dominated by the global hydrological
cycle, with generally good agreement with major basin-
scale water storage changes predicted by land surface
models [e.g., Wahr et al., 2004; Tapley et al., 2004b;
Chen et al., 2005a, 2005b]. GRACE signal variance over
land is (and should be) significantly higher than over the
ocean, and this condition can be used to construct an
optimized smoother, with a criterion of maximizing the
ratio of variance over land relative to that over the
oceans.
[6] The following sections introduce the GRACE data

and hydrological model used in this study, variance
analysis of GRACE measurements and model estimates,
construction of variance-dependent smoothing methods,
optimization of these smoothing methods, and assessment
through comparison with Gaussian smoothing and climate

model estimates. A summary and general discussion is
provided at the end.

2. Data and Processing

2.1. GRACE Time-Variable Gravity

[7] We utilize the 22 GRACE monthly gravity field
solutions for the period April 2002 to July 2004 from the
release R001 [Bettadpur, 2003], consisting of fully normal-
ized Stokes coefficients up to degree and order 120. The
initial mean gravity field used is the GRACE GGM01
gravity model, derived from the first 111 days of GRACE
data [Tapley et al., 2004a]. Tidal effects, including ocean,
solid Earth, and solid Earth pole tides (rotational deforma-
tion) have been removed in the level-2 GRACE data
processing, and nontidal atmospheric and oceanic contribu-
tions are also removed in the level-2 dealiasing process (for
details, see Bettadpur [2003]). Consequently, GRACE time-
variable gravity represents effects from geophysical phenom-
ena not already modeled (mainly terrestrial water storage and
snow/ice change), uncertainties in the a priori models, and
errors in GRACE measurements. There are additional alias-
ing errors associated with the space-time sampling provided
by the satellite ground track that is used to construct a nominal
monthly mean gravity field.

2.2. Hydrological Model Estimate

[8] Soil moisture and snow estimates are from NASA’s
Global Land Data Assimilation System (GLDAS) [Rodell et
al., 2004a, 2004b]. GLDAS is an advanced land surface
modeling system jointly developed by scientists at the
NASA Goddard Space Flight Center (GSFC) and the
NOAA National Centers for Environmental Prediction.
GLDAS parameterizes, forces, and constrains sophisticated
land surface models with ground and satellite products with
the goal of estimating land surface states (e.g., soil moisture
and temperature) and fluxes (e.g., evapotranspiration). In
this particular simulation, GLDAS drove the Noah land
surface model [Ek et al., 2003] version 2.7.1, with observed
precipitation and solar radiation included as inputs. GLDAS
estimates are the sum of soil moisture (2 m column depth)
and snow water equivalent. Greenland and Antarctica are
excluded because the Noah model does not include ice sheet
physics. The GLDAS data are provided on 1� � 1� grids
and at 3-hourly intervals.
[9] GLDAS terrestrial water storage changes (soil mois-

ture plus snow water) are expanded into fully normalized
Stokes coefficients up to degree and order 100. Consistent
with GRACE measurements, the degree 0 term (C00),
representing total water mass change, and degree 1 terms
(C11, S11, C10), representing geocenter motion [Chen et al.,
1999] are excluded in GLDAS data, as these terms are not
provided by GRACE. The degree 2 zonal term (C20) is also
removed from both GRACE and GLDAS data, because this
term is thought to have large errors in the GRACE data
(release R001). The 3-hourly GLDAS soil moisture and
snow water data are averaged into the same GRACE
‘monthly’ intervals before further data processing.
[10] To better resemble GRACE-observed surface mass

changes, we also include the residual baroclinic oceanic
mass variations using the differences of ocean bottom
pressure estimates from two models. One is the Estimating
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the Circulation and Climate of the Ocean (ECCO) con-
sortium’s baroclinic data-assimilating ocean general circu-
lation model, developed at NASA Jet Propulsion
Laboratory, and the other is the same barotropic ocean
general circulation model used in GRACE dealiasing pro-
cess [Bettadpur, 2003]. These differential baroclinic oceanic
mass changes are provided (with our great appreciation) by
John Wahr at the University of Colorado, and are consid-
ered to represent the residual oceanic signals left in GRACE
data (for details, see Wahr et al. [2004]).

2.3. Recovering Water Mass Change From GRACE
and GLDAS

[11] Global surface water mass change Ds can be com-
puted from either GRACE or climate model Stokes coef-
ficients as [Wahr et al., 1998],

Dsðq;fÞ ¼ RErave
3

XN
l¼0

Xl

m¼0

2l þ 1

1þ kl
~Plm cos qð Þ

� DClm cos mfð Þ þ DSlm sin mfð Þ½ �; ð1Þ

where RE is the mean radius of the Earth, q and f are
colatitude and east longitude, DClm and DSlm are the fully
normalized Stokes coefficients of degree l and order m, ~Plm

are normalized associated Legendre functions, and kl is the
load Love number (of degree l). rave is the mean density of
the Earth. When dealing with real data either from GRACE
or model, the summation goes to a fixed degree (N).
[12] GRACE high-degree and high-order Stokes coeffi-

cients are dominated by noise, and equation (1) needs to be
modified to account for this [e.g., Chen et al., 2005a]. Using
Gaussian smoothing [Jekeli, 1981] to suppress high-degree

and high-order terms equation (1) can be rewritten as [Wahr
et al., 1998]

Dsðq;fÞ ¼ RErave
3

XN
l¼0

Xl

m¼0

2l þ 1

1þ kl
Wl

~Plm cos qð Þ

� DClm cos mfð Þ þ DSlm sin mfð Þ½ �; ð2Þ

where Wl = Wl(r) is the Gaussian weighting function,
dependent on the selected effective radius (r). Wl reduces
contributions from high-degree and high-order Stokes
coefficients, suppressing noise in the derived mass change
fields. Gaussian smoothing gives equal weight Wl to all
orders of Stokes coefficients at each degree (l), equivalent to
convolution with a circular Gaussian shaped filter. Radius r
corresponds to the distance at which the weight drops to
half its peak value at the shortest wavelength [Wahr et al.,
1998].
[13] Considering a non-isotropic filter, a more general

format of equation (2) is as following,

Dsðq;fÞ ¼ RErave
3

XN
l¼0

Xl

m¼0

2l þ 1

1þ kl
~Plm cos qð Þ

� WC
lmDClm cos mfð Þ þWS

lmDSlm sin mfð Þ
� �

; ð3Þ

where Wlm
C and Wlm

S represent the no-isotropic weights
assigned for each Stokes coefficient. The focus of this study
(and also of many previous studies as discussed earlier) is to
find out how to define and determine the optimized weights
for each Stokes coefficient.

3. Optimized Variance-Dependent Smoothing

[14] High-order GRACE Stokes coefficients tend to be
dominated by noise, especially sectorial terms (m = l)
[Tapley et al., 2004b; Chen et al., 2005a]. Gaussian
smoothing sufficient to suppress this high-order noise also
attenuates signal in lower-order Stokes coefficients (of the
same degree). Two methods cited earlier, Han et al. [2005a]
and Seo and Wilson [2005], address this problem in differ-
ent ways. Seo and Wilson [2005] use the ratio of signal to
signal plus noise variance at each degree and order, a least
squares optimum weight. However, their approach requires
knowledge of both signal and noise variance at each degree
and order, which both may only be known approximately.
Han et al. [2005a] use non-isotropic weighting with Gauss-
ian-type operators that suppress high-order terms. This is
effective, but not a well-defined optimization strategy. Here
we develop a new criterion based on maximizing the ratio of
land variance to ocean variance in the estimates.
[15] As a first step, we compute RMS deviations about

the mean at each degree and order for the 22 GRACE
solutions and GLDAS estimates. Next, we compute the ratio
of GRACE to GLDAS RMS values. The RMS ratio, up to
degree and order 60 is in Figure 1. We interpret a ratio much
larger than 1 as evidence of a large noise level in the
GRACE data at that degree and order. Ratios are close to
unity, up to about degree 20. Significant variations with
degree and order are evident beyond this.
[16] We construct two variance-dependent smoothing

methods with adjustable parameters. The first is based on

Figure 1. Mean RMS ratios between GRACE-observed
(GRC) and model-predicted (MLD) time-variable Stokes
coefficients. For each Stokes coefficient Clm or Slm, the ratio
represents the mean RMS of the 22 GRACE solutions over
the mean RMS of model predictions during the same
periods.
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the RMS ratio (Figure 1) and we call this method RMS,
with weights of the form

WC
lm ¼ RMS CMDL

lmð Þ
RMS CGRC

lmð Þ * a

� �b
; when WC

lm > 1; WC
lm ¼ 1

WS
lm ¼ RMS SMLD

lmð Þ
RMS SGRC

lmð Þ * a

� �b
; when WS

lm > 1; WS
lm ¼ 1;

ð4Þ

in whichWlm
C andWlm

S are the assigned weights to the Stokes
coefficients DClm and DSlm. a and b are two variable scale
factors. RMS(Clm

MDL, Slm
MDL) and RMS(Clm

GRC, Slm
GRC) are the

RMS of coefficients from GRACE (abbreviated GRC) and
GLDAS plus residuals over the oceans (abbreviated MLD).
Parameters (a, b) are selected to maximize the ratio of
variance over land areas, relative to the oceans, as discussed
below. The maximum value of the weights (Wlm

C and Wlm
S ) is

1. So, when Wlm
C or Wlm

S > 1, they are assigned to equal to 1
(the same is applied to equation (5)).
[17] The second smoothing method uses formal errors

estimated and reported with GRACE Stokes coefficients
[Bettadpur, 2003]. We call this method FM, and with
weights of the form

WC
lm ¼ RMSðCMDL

lm
Þ2

RMS CMDL
lmð Þ2þ SIG CGRC

lmð Þ* kð Þ2 ; when WC
lm > 1; WC

lm ¼ 1

WS
lm ¼ RMS SMDL

lmð Þ2
RMS SMDL

lmð Þ2þ SIG SGRC
lmð Þ* kð Þ2 ; when WS

lm > 1; WS
lm ¼ 1;

ð5Þ

where SIG(Clm
GRC, Slm

GRC) are the reported formal errors. These
weights correspond to least squares optimumvalues, assuming
that GLDAS results are the true signal. An alternative,
examined by Seo and Wilson [2005] employed modified
GRACE results as signal variance estimates. This changes the
results only slightly. Because reported errors probably under-
estimate true errors [Wahr et al., 2004], an adjustable scaling

parameter (k) is included. Seo and Wilson [2005] used k = 5,
while here we search for a value that minimizes signal variance
over the oceans, as described below.
[18] We assume that GRACE measurement errors are

approximately at the same level over both land and ocean.
Then RMS GRACE estimates over land and oceans are the
sum of the signal (MASSland) and (MASSocean) plus noise
(Err), so the ratio is

RMS Ratio ¼ RMSðMASSland þ ErrÞ
RMSðMASSocean þ ErrÞ ð6Þ

It is expected that RMS(MASSland) > RMS(MASSocean), so
for any (Err),

RMS MASSlandð Þ
RMS MASSoceanð Þ � RMS Ratio � 1; and

RMS Ratio ¼ RMS MASSlandð Þ
RMS MASSoceanð Þ ; when Err ¼ 0

RMS Ratio 	 1; when RMS Errð Þ >> RMS MASSlandð Þ:

ð7Þ

That is, for any given level of smoothing, RMS_Ratio falls

between b1; RMS MASSlandð Þ
RMS MASSoceanð Þc. To optimize each method, we

seek parameters (a, b) in equation (4) or k in equation (5)
that produces a maximum RMS ratios for GRACE
estimated mass fields.
[19] For chosen values of the parameters (a, b) or k,

degree- and order-dependent weights from equations (4) or
(5), in equation (2) allows us to use equation (3) to compute
global surface mass change (in units of cm of equivalent
water load change) on 1� latitude � 1� longitude grids from
the 22 GRACE solutions, truncated at degree and order 60
(i.e., N = 60), and excluding the C20 coefficient.
[20] Figure 2 shows RMS ratios of the 22 GRACE

estimated mass fields computed for a range of parameters

Figure 2. Mean RMS ratios between GRACE-observed
signals over land and noise (plus signals) over the ocean as
a function of scale factors a and b as defined in equation (3).
The mean RMS ratios are computed from the mean land and
ocean RMS of 22 GRACE estimated mass fields.

Figure 3. Mean RMS ratios between GRACE-observed
signals over land and noise (plus signals) over the ocean as
a function of scale factor k as defined in equation (4). The
mean RMS ratios are computed from the mean land and
ocean RMS of 22 GRACE estimated mass fields.
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(a, b). The range for (a, b) was deduced from preliminary
tests. A maximum RMS ratio (�2.19) correspond to a = 1.6,
and b = 2.0. This solution (a = 1.6, b = 2.0) is deduced from
the mean RMS ratio for the 22 solutions. It is possible to
perform the same search for individual GRACE solutions,
and the results would vary if the quality of solutions varies.
The global mean RMS ratio is computed from the sum of
RMS ratios at each grid point with cosine of latitude as
weighting.
[21] Similar experiments for the second method (equation

(5)) are shown in Figure 3. A maximum RMS ratio (�2.19)
can be easily identified, corresponding to a value of k = 3.4
for the mean of all 22 solutions. The two optimized
smoothing methods (RMS and FM) produce nearly identical
maximum RMS ratio (2.1931 versus 2.1928), with the RMS
method generates a slightly higher maximum value. We
should point out that when the weights are computed using
equations (4) and (5), the effects of elastic deformation from
terrestrial water storage and ocean bottom pressure changes
are not considered. This is based on our additional experi-
ments (not presented here) to compare the results of two
cases, including or excluding the effects of elastic deforma-
tion. When excluding the effects of elastic deformation, the
two optimized smoothing methods produce consistently
higher maximum RMS ratios between land and ocean. This
is equivalent to an increase of weight for low-degree Stokes
coefficients.
[22] Figure 4 shows similar RMS ratios when the Gauss-

ian smoothing is used, as a function of the spatial radius.
Interestingly, RMS ratios from the Gaussian smoothing
reach a maximum value (�1.88) when the spatial radius r
is 800 � 1000 km, very similar to the optimal value
(�800 km) suggested by Chen et al. [2005a] on the basis
of minimized RMS residuals between GRACE observations
and GLDAS estimates. These RMS ratio analyses indicate
that using the proposed optimized smoothing can signifi-

cantly improve the signal-to-noise ratio than the Gaussian
smoothing (2.19 versus 1.88) in GRACE estimate terrestrial
water storage changes.

4. Water Storage Changes From the Optimized
Smoothings

4.1. Assessment of the Optimized Smoothings

[23] We compare results from the two optimized smooth-
ing methods with water storage changes from Gaussian
smoothing with an 800 km radius, a value recommended by
Chen et al. [2005a]. The four left plots of Figure 5 show
GRACE water storage in April 2003 from 800 km Gaussian
smoothing (Figure 5a), and three cases using the RMS-
dependent smoothing (based on equation (4)). Parameters
were RMS Case01 is when a = 1 and b = 1 (Figure 5c), RMS
Case02 is when a = 1 and b = 2 (Figure 5e), and RMS
Case03 with optimum values a = 1.6 and b = 2.0 (Figure 5g).
The four right plots are similar comparisons for October
2003. April and October are months of maximum and
minimum storage in the seasonal global water cycle [Wahr
et al., 2004; Tapley et al., 2004b; Chen et al., 2005a]. With
relatively large signal-to-noise levels during these months, it
should be easier to identify improvements in water storage
estimates.
[24] Figure 5 shows that results are sensitive to the

choice of parameters (a, b). The optimized parameter case
(RMS Case03) shows load changes that correspond well
with landmasses and river basins, and little organized
variation over the oceans (e.g., in the South Atlantic,
Figure 5h). In contrast, 800 km Gaussian smoothing shows
organized longitudinal stripes over the oceans. For most
major river basins, amplitudes in RMS Case03 exceed
those from Gaussian smoothing. We interpret this as the
effect of signal attenuation (or leakage error) in Gaussian
smoothing.
[25] Figure 6 shows similar comparisons (as in Figure 5),

for various scale parameters k in equation (4): FMCase01
k = 1, FM Case02 k =10, and FM Case03 k = 3.4, the
optimum value. Results are sensitive to the choice of k.
Residuals over the oceans from FM Case02 appear smaller
than those of optimized FMCase03, but variations over the
land are also smaller. In both cases (Figures 5 and 6), using
the optimized parameters provides similar results for these
two months (April and October 2003). RMS Case03 shows
slightly more details than FM Case03, for example, in the
Eurasia continent (Figures 5g and 6g).

4.2. Equivalent Spatial Resolution

[26] Spatial smoothing will affect estimated signal levels,
and in the case of simple Gaussian smoothing, lower
variance will result as the smoothing radius is increased.
To quantify this, we apply Gaussian smoothing and the two
optimized smoothing methods to the same GLDAS (plus
baroclinic oceanic) data for April 2003 and October 2003 in
the left and right plots of Figure 7, respectively. Figures 7a
and 7b are for the GLDAS estimates with no smoothing,
Figures 7c and 7d are for GLDAS with 500 km Gaussian
smoothing, Figures 7e and 7f are for GLDAS with RMS
Case03 smoothing, and Figures 7g and 7h are for GLDAS
with FM Case03 smoothing. We tested Gaussian smoothing
with additional radius parameters, as well. We find that the

Figure 4. Mean RMS ratios between GRACE-observed
signals over land and noise (plus signals) over the ocean as
a function of the spatial radius (r) used in Gaussian
smoothing. The mean RMS ratios are computed from the
mean land and ocean RMS of 22 GRACE estimated mass
fields.
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Figure 5. GRACE estimated global terrestrial water storage changes in (left) April 2003 and (right)
October 2003 with (a and b) 800 km Gaussian smoothing and with three selected RMS weighted
smoothing methods: (c and d) RMS Case01, (e and f) RMS Case02, and (g and h) RMS Case03.
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Figure 6. GRACE estimated global terrestrial water storage changes in (left) April 2003 and (right)
October 2003 with (a and b) 800 km Gaussian smoothing and with three selected formal (FM) error
weighted smoothing methods: (c and d) FM Case01, (e and f) FM Case02, and (g and h) FM Case03.
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Figure 7. GLDAS estimated global terrestrial water storage changes (plus oceanic residual signals) in
(left) April 2003 and (right) October 2003 in four cases: (a and b) without any smoothing, (c and d) with
500 km Gaussian smoothing, (e and f) with optimized RMS weighted smoothing (RMS Case03), and (g
and h) with optimized formal error weighted smoothing (FM Case03).

B06408 CHEN ET AL.: OPTIMIZED SMOOTHING OF GRACE OBSERVATION

8 of 11

B06408



two optimized variance-dependent smoothing methods re-
duced signal variance by about the same amount as does
500 km Gaussian smoothing.

4.3. Comparison With Model Estimates

[27] The optimized variance-dependent smoothing appar-
ently improves spatial resolution, and shows larger seasonal
variability in the recovered mass fields than Gaussian
smoothing examples. There remain residual variations over
the oceans from the optimized smoothing which may be
either of geophysical origin or due to noise. GLDAS
seasonal water storage changes are smaller than the three
estimates from GRACE (Gaussian 800 km, RMS Case03,
FM Case03). This may be partly due to the omission of
groundwater effects, or underestimate of soil and snow
water change in GLDAS.
[28] GRACE-observed residual signals over the oceans

are significantly larger than model estimated baroclinic
mass variations and also show less to nearly no correlation
with model estimates, indicating either the oceanic residuals
from GRACE are still mostly from noise, or the ECCO
baroclinic model significantly underestimates seasonal
large-scale oceanic mass changes. However, some of the
strong oceanic residual signals, such as the dominant
positive residuals (over 5 cm of equivalent water height
change in a region of nearly 40� � 40�) in the South

Atlantic in October 2003 (Figure 6h) are unlikely from
GRACE errors.

4.4. Basin-Scale Improvements

[29] Here we compare results for several basins in more
detail, and show that spatial resolution of our optimized
smoothing methods is superior to Gaussian smoothing, in
that load changes are aligned with known geographical
boundaries. Figure 8 shows GRACE water storage changes
April 2003 in Alaska and western Canada (Yukon and
Fraser basins and surrounding areas) from 800 km Gaussian
smoothing (Figure 8a), and RMS Case03 smoothing
(Figure 8b). The peak value with Gaussian smoothing is
between 6 and 7 cm equivalent water thickness, compared
to 10 to 11 cm in the RMS Case03. The boundary of the
RMS Case03 aligns much better with the coast line.
[30] The four plots of Figure 9 show GRACE water

storage changes in South America for April and October
2003. Figures 9a and 9b show 800 km Gaussian smoothing,
and Figures 9c and 9d show RMS Case03. In the Amazon
basin, the magnitude of the seasonal signal and the large
size of the basin allow 800 km Gaussian smoothing to
produce estimates similar to RMS Case03. However, RMS
Case03 results align better with streamlines and appear to
have lower levels of variance leakage outside the basin.
RMS Case03 shows larger seasonal variability, as well. A
time series comparison of water storage changes in the
Amazon basin in Figure 10 shows this more clearly. As
shown in Figure 9, in the Orinoco basin, a small basin north
of Amazon, RMS Case03 appears to be superior relative to
Gaussian smoothing, showing a load change clearly aligned
with the geographical boundaries of the basin. The bound-
ary between Amazon and Orinoco basins is also much
clearer with RMS Case03, relative to Gaussian smoothing.

5. Conclusions and Discussion

[31] The optimized variance-dependent smoothing meth-
ods appear to more effectively recover global surface mass
changes from GRACE time-variable gravity measurements,
when compared with Gaussian smoothing. These methods
maximize the variance ratio of mass changes over the land
relative to those over the ocean. They produce lower levels
of variance leakage associated with a finite range of
spherical harmonics, and improved spatial resolution, as
measured by the coincidence of water loads with known
geographical boundaries.
[32] These two methods assign degree- and order-depen-

dent weights to Stokes coefficients using information from
the GLDAS land surface modeling system and baroclinic
oceanic residuals estimated from models [Wahr et al.,
2004]. In one case, the weight is a ratio between model
RMS and GRACE RMS, to make the GRACE spherical
harmonic spectrum more similar to that of model estimate.
Adjustable parameters are chosen to maximize the mean
variance ratios of mass changes over the land relative to
those over the ocean. The second methods follows a least
squares criterion where the weight is the sum of signal
(GLDAS + barotropic ocean) over signal plus noise vari-
ance, with an adjustable scaling parameter, again chosen to
maximize the variance ratio of mass changes over the land
relative to those over the ocean. These two methods show

Figure 8. GRACE estimated water storage changes in the
Yukon and Fraser basins (located in Alaska and western
Canada) with (a) 800 km Gaussian smoothing and
(b) optimized RMS weighted smoothing (RMS Case03).
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Figure 9. GRACE estimated water storage changes in South America in (left) April 2003 and (right)
October 2003 using (a and b) 800 km Gaussian smoothing and (c and d) optimized RMS weighted
smoothing (RMS Case03).
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similar results, although RMS Case03 appears to have
slightly better signal-to-noise levels relative to FM Case03
smoothing. These methods also appear to be better than the
dynamic basin function results of Seo and Wilson [2005],
especially for smaller basins [Seo et al., 2006]. The
improvements over the order-dependent smoothing results
of Han et al. [2005a] are also evident.
[33] From a philosophical point of view, one might be

concerned about the dependence of the weights on the land
surface and oceanic models. Since only the mean RMS
variability of the model estimates are employed, any good
land surface model can be used, with probably similar
results. The main point is that the land surface model has
imbedded in it the geographical information about river
basins locations, and regions where signal variance is
expected to be concentrated. Using degree- and order-
dependent weights based on the model spectrum forces
the GRACE results to have similar geographical behavior.
As an improvement on this method, we can add additional
features to GLDAS mass variations, to allow for other
components of surface mass change that should be in
GRACE, but are not in GLDAS. One of these is certainly
the variations over Greenland and Antarctica, and there are
at least seasonal models of these that could be added to
GLDAS.
[34] Additional experiments from this study indicate that

when elastic deformation from water storage and ocean
bottom pressure changes is not considered, these two opti-
mized smoothing methods produce relatively higher maxi-
mum RMS ratio. Any method that suppresses high-degree
and high-order terms will reduce signal as well as noise, and
a restoring method such as that discussed by Chen et al.
(submitted manuscript, 2006) would be appropriate to cor-
rect for this effect.
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Figure 10. GRACE estimated water storage change in the
Amazon basin in three cases: RMS Case03 and 800 and
1000 km Gaussian smoothing.
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