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Figure 1. Input geodetic rates: (a) GPS radial deformation,
(b) GPS horizontal, (c) GRACE gravity anomaly (minus
GLDAS hydrology model), and (d) tide gauge RSL.

Figure 2. A priori GIA predictions: (a) radial deformation,
(b) horizontal deformation, (c) FAGA, and (d) RSL.
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Figure 2. A priori GIA predictions: (a) radial deformation,
(b) horizontal deformation, (c) FAGA, and (d) RSL.
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Figure 1. Input geodetic rates: (a) GPS radial deformation,
(b) GPS horizontal, (c) GRACE gravity anomaly (minus
GLDAS hydrology model), and (d) tide gauge RSL.

Figure 2. A priori GIA predictions: (a) radial deformation,
(b) horizontal deformation, (c) FAGA, and (d) RSL.
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related observables, such as present‐day three‐dimensional
crustal deformation rates, present‐day gravity rates, or
present‐day relative sea level rates. (We will confine our-
selves to these field types, although there could be others.)
The parameter vector u may contain multiple GIA obser-
vation types. We typically wish to estimate these parameters
on an evenly spaced grid of locations. We also have a vector
of GIA‐field observations d, not necessarily obtained on
a grid. The vector u contains the GIA‐field values corre-
sponding to the union of the grid locations and the locations
for which we have observations. We seek a solution u = û
that minimizes the penalty function J [e.g., Bennett, 2002]

J ½u" ¼ d $ A % uð ÞTW$1 d $ A % uð Þ þ m$ uð ÞTL$1 m$ uð Þ ð1Þ

where m is a vector of prior GIA‐field model predictions,
the matrices W and L are inverse weight (i.e., covariance)
matrices associated with the observations and the a priori
predictions, respectively, and the design matrix A contains
the partial derivatives of the observed values with respect to
the parameters

Aij ¼
@di
@uj

!!!!
u¼m

i ¼ 1; . . . ;N j ¼ 1; . . . ;M ð2Þ

where N is the length of the observation vector and M is the
length of the parameter vector. The structure of the design
matrix is discussed below. In addition to the GIA‐field
values, u may contain additional parameters that account for
non‐GIA effects, such as parameters to account for the GPS
reference frame (which may be different to the implicit GIA
reference frame) or parameters to account for sea level
change not associated with GIA. Equations (1) and (2)
implicitly assume that the problem is linear, that the
deviations of the solution from both the prior model and the
data are small enough that the problem is within the linear
regime, or that the problem has been linearized.
[11] In equation (1), the first term of the penalty function

represents misfit of the data d with respect to the predicted
values for the data based on u, and the second term
represents the misfit between the solution and the prior
model. Minimization of the penalty function balances these
two contributions to the penalty. The elements and structure
of W and L weight the contributions.
[12] The dimension N of the observation vector must

account for all the GIA observations at whatever locations
the observations were acquired. For example, if there are
nGPS GPS sites then the number of observations might be
N = 3nGPS, where the factor of three comes from the three
components of velocity. Continuing with the example, if we
wish to estimate the three‐dimensional GIA deformation at
ngrid grid points, and to include six reference frame para-
meters (three rotation, three translation), then the total
number of parameters to be estimated is M = 3nGPS +
3ngrid + 6. Clearly, then, the minimization problem has the
potential of being highly underconstrained. We overcome
this problem by an appropriate choice for the inverse‐weight
matrix L such that the physics of the GIA problem is
inherent in the weight matrix. This choice removes many
degrees of freedom from the problem.
[13] A straightforward choice for the observational

inverse‐weight matrix W is the error covariance matrix for

the observations. In practice, this will often be a diagonal
matrix, although if so‐called “loose” GPS solutions (solu-
tions not yet fixed to a terrestrial reference frame) are used
the matrix will not be diagonal. (Once a reference frame is
established for GPS solutions, nondiagonal elements are so
small that the matrix can be treated in practice as if it were
diagonal.) The prior GIA predictions, however, are not
statistical in nature, as they are derived from forward cal-
culations using adopted Earth and ice history models.
Nevertheless, it is possible to calculate the effect of varia-
tions of Earth and ice models and propagate those variations
into the solution. If W represents a set of “reasonable”
models, and hmi represents the average of the GIA predic-
tions using the NW models in W, then an effective model
covariance matrix can be calculated:

Lij ¼
1
NW

XNW

k¼1

mk
i $ hmii

" #
mk

j $ hmij
$ %

i; j ¼ 1; . . . ;Mobs þMgrid

ð3Þ

where Mobs is the total number of observations (3nGPS in the
previous example), Mgrid is the number of parameters to be
estimated at grid locations (3ngrid in the example), and the
superscript k indicates that the GIA predictions were cal-
culated using the kth Earth/ice model combination.
Equation (3), though, defines only part of L since the
dimension of L is M × M, where M = Mobs + Mgrid + Mother,
with Mother being the number of additional parameters that
describe effects that are unrelated to GIA (as discussed
above). The covariance of these non‐GIA parameters are
assumed to be uncorrelated with the model values.
[14] The structure of the design matrix A is straightfor-

ward. For j ≤ Mobs + Mgrid, the value of Aij of equation (2)
will be unity if both the location andGIA field type associated
with the indices i and j are the same, and zero otherwise. For
index j > Mobs + Mgrid, Aij is the partial derivative of the
observable with respect to an additional, non‐GIA parameter.
[15] Each individual term in the penalty function of

equation (1) has now been defined. Minimization of the
penalty function involves balancing deviations of the
parameter solution û with respect to observations d against
deviations of the solution from the prior model m. The
relative weight given to each of these terms is defined by the
inverse weight matrices W and L. Off‐diagonal elements of
L constrain the deviations among the parameters to physi-
cally realistic GIA solutions (i.e., the solution is constrained
to fall within a range of values that can be explained by the
physics contained in our suite of forward model predic-
tions). In section 2.1, we discuss how the minimization is
implemented.

2.1. Implementation
[16] Minimizing the penalty function J of equation (1)

with respect to u leads to the solution

u ¼ mþ ATW$1Aþ L$1" #$1
ATW$1 d $ Amð Þ ð4Þ

with covariance matrix

Gu ¼ ATW$1Aþ L$1" #$1 ð5Þ
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Tamisiea et al., 2001] but here we ignore these effects over
Fennoscandia.

3. Data and Model Inputs

[23] Our technique assimilates estimated rates from GPS,
GRACE, and tide gauges into a priori predictions for GIA.
The a priori estimates are the average of multiple forward
models for GIA. The physics of the GIA are contained in the
input covariance matrix.

3.1. GPS Data
[24] We used both radial and horizontal GPS velocities

(Figures 1a and 1b) estimated by Lidberg et al. [2007].
These are based on ∼8.5 years of data (January 1996 to June
2004) from continuous GPS stations in the BIFROST net-
work. We used a subset of 40 of the sites presented by
Lidberg et al. [2007] as we excluded sites south of the Baltic
Sea. This area is likely to be undergoing other forms of
deformation unrelated to GIA (e.g., tectonic deformation
from Africa‐Eurasia plate convergence [Marotta et al.,
2004]), and the monument geology is generally of glacial
deposits (as compared to bedrock outcrops further north),
which limits monument stability.
[25] Lidberg et al. [2007] processed the GPS data using

the GAMIT/GLOBK software. A network of carefully
selected global stations was used to realize the results to
ITRF2000. The results in ITRF2000 were then rotated using
the ITRF2000 No Net Rotation (NNR) Absolute Rotation
Pole for Eurasia. Comparison of their solution with the
previous results from Johansson et al. [2002] indicated a
radial bias between the solutions of ∼0.5 mm/yr, which they
hypothesized was due to differences in the reference frame
realization. Overall, comparisons with the Johansson et al.
[2002] GPS solution, a GIA model, and results from
Ekman [1998] lead Lidberg et al. [2007] to conclude that
their solution has an accuracy in the radial component at the
0.5 mm/yr level and an internal consistency in the horizontal
component of 0.2 mm/yr (for the best GPS stations with
long observation spans).

3.2. GRACE Data
[26] We estimated rates of change in FAGA using GRACE

data from the University of Texas at Austin Center for Space
Research (CSR) Release‐04 (RL04) (Figure 1c). We also
tested rates estimated using the GeoForschungsZentrum
Potsdam (GFZ) RL04 data. For both data sets we used data
for the period from August 2002 to July 2008. Systematic
errors in the data that cause north‐south striping were
reduced (“destriped”) following a similar technique to that
described by Swenson and Wahr [2006]. The gridded rates
were geographically smoothed with a Gaussian filter of
400 km width, and sampled to a 2° grid. This relatively
coarse sampling was chosen to avoid having a significant
bias in the number of GRACE data points compared to
the number of GPS and tide gauge stations. Nearby points
on a fine‐resolution grid will also be highly correlated.
Hydrological effects were removed using the Global Land
Data Assimilation Systems (GLDAS) model for water
storage [Rodell et al., 2004]. (GLDAS uses ground‐ and
space‐based observations to constrain models for land sur-

Figure 4. Output GIA models for horizontal and radial
deformation, and corresponding uncertainties, with different
combinations of geodetic data set assimilated: (a) GPS only;
(b) tide gauge only; (c) GRACE only; (d) tide gauge and
GRACE; (e) GPS and tide gauge; (f) GPS and GRACE;
and (g) GPS, tide gauge, and GRACE.
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face states. It does not include a groundwater component.)
For consistency, the GLDAS data were destriped and smoothed
using the same routine as that used for the GRACE data.

3.3. Tide Gauge Data
[27] We estimated rates of RSL change for all tide gauges

in the area that have ≥40 years of data (Figure 1d). For these
sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
south coast of the Baltic Sea.

3.4. GIA Models
[28] As described in section 2, the a priori GIA estimates

for crustal deformation (Figures 2a and 2b), FAGA (Figure 2c),
and RSL (Figure 2d) are the average of multiple forward
model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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Figure 1: Estimated GIA fields for Fennoscandia, and their uncertainties (or 95% confidence
ellipses for horizontal motion), from Hill et al. [2010]. Top: three-dimensional deformation.
Bottom: free-air gravity anomaly (FAGA). Not shown: estimated sea level field. These fields
resulted from combination of GPS, GRACE, and tide-gauge data (Figure 2). From Hill et al.
[2010].

to provide posterior estimates of the GIA fields, along with a posterior covariance matrix. In
this way, we produced data-driven fields (and uncertainties) for GIA-induced crustal deforma-

3

Tamisiea et al., 2001] but here we ignore these effects over
Fennoscandia.

3. Data and Model Inputs

[23] Our technique assimilates estimated rates from GPS,
GRACE, and tide gauges into a priori predictions for GIA.
The a priori estimates are the average of multiple forward
models for GIA. The physics of the GIA are contained in the
input covariance matrix.

3.1. GPS Data
[24] We used both radial and horizontal GPS velocities

(Figures 1a and 1b) estimated by Lidberg et al. [2007].
These are based on ∼8.5 years of data (January 1996 to June
2004) from continuous GPS stations in the BIFROST net-
work. We used a subset of 40 of the sites presented by
Lidberg et al. [2007] as we excluded sites south of the Baltic
Sea. This area is likely to be undergoing other forms of
deformation unrelated to GIA (e.g., tectonic deformation
from Africa‐Eurasia plate convergence [Marotta et al.,
2004]), and the monument geology is generally of glacial
deposits (as compared to bedrock outcrops further north),
which limits monument stability.
[25] Lidberg et al. [2007] processed the GPS data using

the GAMIT/GLOBK software. A network of carefully
selected global stations was used to realize the results to
ITRF2000. The results in ITRF2000 were then rotated using
the ITRF2000 No Net Rotation (NNR) Absolute Rotation
Pole for Eurasia. Comparison of their solution with the
previous results from Johansson et al. [2002] indicated a
radial bias between the solutions of ∼0.5 mm/yr, which they
hypothesized was due to differences in the reference frame
realization. Overall, comparisons with the Johansson et al.
[2002] GPS solution, a GIA model, and results from
Ekman [1998] lead Lidberg et al. [2007] to conclude that
their solution has an accuracy in the radial component at the
0.5 mm/yr level and an internal consistency in the horizontal
component of 0.2 mm/yr (for the best GPS stations with
long observation spans).

3.2. GRACE Data
[26] We estimated rates of change in FAGA using GRACE

data from the University of Texas at Austin Center for Space
Research (CSR) Release‐04 (RL04) (Figure 1c). We also
tested rates estimated using the GeoForschungsZentrum
Potsdam (GFZ) RL04 data. For both data sets we used data
for the period from August 2002 to July 2008. Systematic
errors in the data that cause north‐south striping were
reduced (“destriped”) following a similar technique to that
described by Swenson and Wahr [2006]. The gridded rates
were geographically smoothed with a Gaussian filter of
400 km width, and sampled to a 2° grid. This relatively
coarse sampling was chosen to avoid having a significant
bias in the number of GRACE data points compared to
the number of GPS and tide gauge stations. Nearby points
on a fine‐resolution grid will also be highly correlated.
Hydrological effects were removed using the Global Land
Data Assimilation Systems (GLDAS) model for water
storage [Rodell et al., 2004]. (GLDAS uses ground‐ and
space‐based observations to constrain models for land sur-

Figure 4. Output GIA models for horizontal and radial
deformation, and corresponding uncertainties, with different
combinations of geodetic data set assimilated: (a) GPS only;
(b) tide gauge only; (c) GRACE only; (d) tide gauge and
GRACE; (e) GPS and tide gauge; (f) GPS and GRACE;
and (g) GPS, tide gauge, and GRACE.
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face states. It does not include a groundwater component.)
For consistency, the GLDAS data were destriped and smoothed
using the same routine as that used for the GRACE data.

3.3. Tide Gauge Data
[27] We estimated rates of RSL change for all tide gauges

in the area that have ≥40 years of data (Figure 1d). For these
sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
south coast of the Baltic Sea.

3.4. GIA Models
[28] As described in section 2, the a priori GIA estimates

for crustal deformation (Figures 2a and 2b), FAGA (Figure 2c),
and RSL (Figure 2d) are the average of multiple forward
model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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Figure 1: Estimated GIA fields for Fennoscandia, and their uncertainties (or 95% confidence
ellipses for horizontal motion), from Hill et al. [2010]. Top: three-dimensional deformation.
Bottom: free-air gravity anomaly (FAGA). Not shown: estimated sea level field. These fields
resulted from combination of GPS, GRACE, and tide-gauge data (Figure 2). From Hill et al.
[2010].

to provide posterior estimates of the GIA fields, along with a posterior covariance matrix. In
this way, we produced data-driven fields (and uncertainties) for GIA-induced crustal deforma-

3

Tamisiea et al., 2001] but here we ignore these effects over
Fennoscandia.

3. Data and Model Inputs

[23] Our technique assimilates estimated rates from GPS,
GRACE, and tide gauges into a priori predictions for GIA.
The a priori estimates are the average of multiple forward
models for GIA. The physics of the GIA are contained in the
input covariance matrix.

3.1. GPS Data
[24] We used both radial and horizontal GPS velocities

(Figures 1a and 1b) estimated by Lidberg et al. [2007].
These are based on ∼8.5 years of data (January 1996 to June
2004) from continuous GPS stations in the BIFROST net-
work. We used a subset of 40 of the sites presented by
Lidberg et al. [2007] as we excluded sites south of the Baltic
Sea. This area is likely to be undergoing other forms of
deformation unrelated to GIA (e.g., tectonic deformation
from Africa‐Eurasia plate convergence [Marotta et al.,
2004]), and the monument geology is generally of glacial
deposits (as compared to bedrock outcrops further north),
which limits monument stability.
[25] Lidberg et al. [2007] processed the GPS data using

the GAMIT/GLOBK software. A network of carefully
selected global stations was used to realize the results to
ITRF2000. The results in ITRF2000 were then rotated using
the ITRF2000 No Net Rotation (NNR) Absolute Rotation
Pole for Eurasia. Comparison of their solution with the
previous results from Johansson et al. [2002] indicated a
radial bias between the solutions of ∼0.5 mm/yr, which they
hypothesized was due to differences in the reference frame
realization. Overall, comparisons with the Johansson et al.
[2002] GPS solution, a GIA model, and results from
Ekman [1998] lead Lidberg et al. [2007] to conclude that
their solution has an accuracy in the radial component at the
0.5 mm/yr level and an internal consistency in the horizontal
component of 0.2 mm/yr (for the best GPS stations with
long observation spans).

3.2. GRACE Data
[26] We estimated rates of change in FAGA using GRACE

data from the University of Texas at Austin Center for Space
Research (CSR) Release‐04 (RL04) (Figure 1c). We also
tested rates estimated using the GeoForschungsZentrum
Potsdam (GFZ) RL04 data. For both data sets we used data
for the period from August 2002 to July 2008. Systematic
errors in the data that cause north‐south striping were
reduced (“destriped”) following a similar technique to that
described by Swenson and Wahr [2006]. The gridded rates
were geographically smoothed with a Gaussian filter of
400 km width, and sampled to a 2° grid. This relatively
coarse sampling was chosen to avoid having a significant
bias in the number of GRACE data points compared to
the number of GPS and tide gauge stations. Nearby points
on a fine‐resolution grid will also be highly correlated.
Hydrological effects were removed using the Global Land
Data Assimilation Systems (GLDAS) model for water
storage [Rodell et al., 2004]. (GLDAS uses ground‐ and
space‐based observations to constrain models for land sur-

Figure 4. Output GIA models for horizontal and radial
deformation, and corresponding uncertainties, with different
combinations of geodetic data set assimilated: (a) GPS only;
(b) tide gauge only; (c) GRACE only; (d) tide gauge and
GRACE; (e) GPS and tide gauge; (f) GPS and GRACE;
and (g) GPS, tide gauge, and GRACE.
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face states. It does not include a groundwater component.)
For consistency, the GLDAS data were destriped and smoothed
using the same routine as that used for the GRACE data.

3.3. Tide Gauge Data
[27] We estimated rates of RSL change for all tide gauges

in the area that have ≥40 years of data (Figure 1d). For these
sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
south coast of the Baltic Sea.

3.4. GIA Models
[28] As described in section 2, the a priori GIA estimates

for crustal deformation (Figures 2a and 2b), FAGA (Figure 2c),
and RSL (Figure 2d) are the average of multiple forward
model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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Figure 1: Estimated GIA fields for Fennoscandia, and their uncertainties (or 95% confidence
ellipses for horizontal motion), from Hill et al. [2010]. Top: three-dimensional deformation.
Bottom: free-air gravity anomaly (FAGA). Not shown: estimated sea level field. These fields
resulted from combination of GPS, GRACE, and tide-gauge data (Figure 2). From Hill et al.
[2010].

to provide posterior estimates of the GIA fields, along with a posterior covariance matrix. In
this way, we produced data-driven fields (and uncertainties) for GIA-induced crustal deforma-

3

Tamisiea et al., 2001] but here we ignore these effects over
Fennoscandia.

3. Data and Model Inputs

[23] Our technique assimilates estimated rates from GPS,
GRACE, and tide gauges into a priori predictions for GIA.
The a priori estimates are the average of multiple forward
models for GIA. The physics of the GIA are contained in the
input covariance matrix.

3.1. GPS Data
[24] We used both radial and horizontal GPS velocities

(Figures 1a and 1b) estimated by Lidberg et al. [2007].
These are based on ∼8.5 years of data (January 1996 to June
2004) from continuous GPS stations in the BIFROST net-
work. We used a subset of 40 of the sites presented by
Lidberg et al. [2007] as we excluded sites south of the Baltic
Sea. This area is likely to be undergoing other forms of
deformation unrelated to GIA (e.g., tectonic deformation
from Africa‐Eurasia plate convergence [Marotta et al.,
2004]), and the monument geology is generally of glacial
deposits (as compared to bedrock outcrops further north),
which limits monument stability.
[25] Lidberg et al. [2007] processed the GPS data using

the GAMIT/GLOBK software. A network of carefully
selected global stations was used to realize the results to
ITRF2000. The results in ITRF2000 were then rotated using
the ITRF2000 No Net Rotation (NNR) Absolute Rotation
Pole for Eurasia. Comparison of their solution with the
previous results from Johansson et al. [2002] indicated a
radial bias between the solutions of ∼0.5 mm/yr, which they
hypothesized was due to differences in the reference frame
realization. Overall, comparisons with the Johansson et al.
[2002] GPS solution, a GIA model, and results from
Ekman [1998] lead Lidberg et al. [2007] to conclude that
their solution has an accuracy in the radial component at the
0.5 mm/yr level and an internal consistency in the horizontal
component of 0.2 mm/yr (for the best GPS stations with
long observation spans).

3.2. GRACE Data
[26] We estimated rates of change in FAGA using GRACE

data from the University of Texas at Austin Center for Space
Research (CSR) Release‐04 (RL04) (Figure 1c). We also
tested rates estimated using the GeoForschungsZentrum
Potsdam (GFZ) RL04 data. For both data sets we used data
for the period from August 2002 to July 2008. Systematic
errors in the data that cause north‐south striping were
reduced (“destriped”) following a similar technique to that
described by Swenson and Wahr [2006]. The gridded rates
were geographically smoothed with a Gaussian filter of
400 km width, and sampled to a 2° grid. This relatively
coarse sampling was chosen to avoid having a significant
bias in the number of GRACE data points compared to
the number of GPS and tide gauge stations. Nearby points
on a fine‐resolution grid will also be highly correlated.
Hydrological effects were removed using the Global Land
Data Assimilation Systems (GLDAS) model for water
storage [Rodell et al., 2004]. (GLDAS uses ground‐ and
space‐based observations to constrain models for land sur-

Figure 4. Output GIA models for horizontal and radial
deformation, and corresponding uncertainties, with different
combinations of geodetic data set assimilated: (a) GPS only;
(b) tide gauge only; (c) GRACE only; (d) tide gauge and
GRACE; (e) GPS and tide gauge; (f) GPS and GRACE;
and (g) GPS, tide gauge, and GRACE.
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face states. It does not include a groundwater component.)
For consistency, the GLDAS data were destriped and smoothed
using the same routine as that used for the GRACE data.

3.3. Tide Gauge Data
[27] We estimated rates of RSL change for all tide gauges

in the area that have ≥40 years of data (Figure 1d). For these
sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
south coast of the Baltic Sea.

3.4. GIA Models
[28] As described in section 2, the a priori GIA estimates

for crustal deformation (Figures 2a and 2b), FAGA (Figure 2c),
and RSL (Figure 2d) are the average of multiple forward
model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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Figure 1: Estimated GIA fields for Fennoscandia, and their uncertainties (or 95% confidence
ellipses for horizontal motion), from Hill et al. [2010]. Top: three-dimensional deformation.
Bottom: free-air gravity anomaly (FAGA). Not shown: estimated sea level field. These fields
resulted from combination of GPS, GRACE, and tide-gauge data (Figure 2). From Hill et al.
[2010].

to provide posterior estimates of the GIA fields, along with a posterior covariance matrix. In
this way, we produced data-driven fields (and uncertainties) for GIA-induced crustal deforma-
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lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
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3.4. GIA Models
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model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
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were also calculated using our collection of GIA forward
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Data-­‐driven	
  GIA	
  fields	
  :	
  Bayesian	
  approach	
  	
  	
  



•  Expand	
  Bayesian	
  approach	
  to	
  global	
  field	
  to	
  simultaneously	
  esLmate	
  melLng	
  signal	
  and	
  GIA	
  

•  The	
  uncertainty	
  in	
  the	
  GRACE	
  esLmate	
  is	
  desired	
  

•  Both	
  stripe	
  noise	
  and	
  destriping	
  procedure	
  contribute	
  to	
  uncertainty	
  	
  
	
  
•  Could	
  we	
  extend	
  Bayesian	
  approach	
  to	
  GRACE	
  data	
  and	
  properly	
  account	
  for	
  stripe	
  noise	
  ?	
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Conclusion	
  
	
  
•  Preliminary	
  results	
  show	
  that	
  the	
  designed	
  Kalman	
  filter	
  can	
  effecLvely	
  

separate	
  gravity	
  signals	
  from	
  stripe	
  noise	
  in	
  Bayesian	
  framework.	
  

•  This	
  new	
  technique	
  enables	
  the	
  evaluaLon	
  of	
  the	
  impact	
  of	
  destriping,	
  and	
  thus	
  
provides	
  staLsLcally	
  rigorous	
  esLmate	
  of	
  uncertainty.	
  

	
  
	
  
Future	
  work	
  
	
  
•  Introduce	
  spaLal	
  constraint	
  	
  	
  

•  Integrate	
  GRACE	
  with	
  other	
  data	
  types	
  to	
  enable	
  simultaneous	
  esLmaLon	
  of	
  
present-­‐day	
  melLng,	
  GIA	
  and	
  sea-­‐level	
  and	
  associated	
  uncertainLes.	
  

	
  
	
  


