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Study Objective |

*  How much water is stored and drained from the Congo
wetlands?

e Where does the water come from?

* Datasets

Total storage anomalies from GRACE RLO5 (CSR, GFZ, JPL products)
River storage anomalies from Envisat altimeter and GRFM
Precipitation (P) from GPCP

Model-based Evapotranspiration (ET) from Hillslope River Routing
(HRR) (Beighley et al., 2009)

Hydrological maps from HydroSHEDS (Lehner and D6ll, 2004)

Inundated area from GRFM mosaic, SRTM and MODIS mosaic (Jung
et al., 2010)

Lee et al., RSE, 2011



Study Objective Il

®* What is the control of total storage changes over the central
Congo? Surface or subsurface storage changes?

* Datasets
—  Total storage anomalies from GRACE RLO5 (CSR, GFZ, JPL products)
— Water height changes from Envisat
— Changes in flooded extents from ALOS PALSAR ScanSAR images
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Study Objective |

e How much water is stored and drained from the
Congo wetlands?

e  Where does the water come from?
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GRACE Measurements over the Congo
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* Monthly Equivalent Water Height (EWH) anomalies from the CSR GRACE product after
decorrelation (Duan et al., 2009) and 3-degree radius Gaussian smoothing (Guo et al.,
2010).

* Congo Basin is shown with a red outer boundary. Red rectangles indicate study regions.

* Notice that red-positive anomalies are well timed with the locations of the ITCZ, e.g.,
rainfall during Feb-May in south and rainfall in Sep-Nov in north.
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Study Areas
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Congo GRACE, P-ET, and River Storage Anomalies

Region2  Cuvette Centrale

Meter

Meter

Region 1 North

0.3 0.3
—River Storage (x10) —River Storage (x5)
—GRACE —GRACE
0.2 — |(P-ET) 0.2 — |(P-ET)
0.1
S
(]
=
0
-0.1
-0 % -0 %
2004 2005 2006 2007 2008 2009 2010 2011 2004 2005 2006 2007 2008 2009 2010 2011
Region3  |n the Bend Region 4 South
0.3 0.3
—River Storage (x20) —River Storage (x20)
—GRACE —GRACE
0.2 — |(P-ET) 0.2 — J(P-ET)
_ 01
e
[}
=
0
-0.1
%% %
2004 2005 2006 2007 2008 2009 2010 2011 2004 2005 2006 2007 2008 2009 2010 2011

All three observations are well timed, but river storage can not account for the GRACE anomalies
(rivers have a multiplier) whereas P-ET amplitudes are closer to GRACE.

Given the amplitudes and timing, processes that are driven by P-ET are likely responsible for the
GRACE anomalies, e.g., wetland water storage.



Wetland Volume Anomalies
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* River anomalies in blue, P-ET driven runoff to wetlands in red, 3 GRACE datasets in grey with average in black
* Regions 1, 2 and 4: generally good agreement between GRACE and P-ET driven runoff

* Region 3: timing and amplitudes are not consistent

* Note Beighley et al. 2011 results showing poor match of some satellite rainfall data and gauge discharge



Wetland Flow Rates from GRACE
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Wetland infilling and emptying rates from the temporal derivative of GRACE derived (blue) AS = Qin - Qout

Regions 1, 2, 4: P-ET increases when wetland flux rates change from negative to positive, thus P-ET comes
before the wetland filling. From a temporal perspective, the wetland infilling starts with the P-ET runoff from

the surrounding uplands.

When the wetland flux rates switch from positive to negative, P-ET is on the decreasing limb of the annual
rainfall. This again is expected where the wetland receives the majority of its water from upland runoff.

P-ET anomalies (m)

(m)

P-ET anomalies
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1)

2)

Conclusion (1/2)

We find that the amount of water annually filling and
draining the Congo wetlands is 111 = 5 km3, which is about
one-third the size of the water volumes found on the
mainstem Amazon floodplain (Alsdorf et al., 2010).

Based on amplitude comparisons among the water volume
changes and timing comparisons among their fluxes, we
conclude that the local upland runoff is the main source of
the Congo wetland water, not the fluvial process of the
river-floodplain water exchange as in the Amazon.



Study Objective Il

What is the control of total storage changes
over the central Congo?



ScanSAR Coverage with Envisat Tracks

ALOS PALSAR L-band ScanSAR images
- 350 km swath width
- 100 m spatial resolution 1 b
- speckle noise reduced by 3x3 /4 R
median filter L ——
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ScanSAR Backscattering Coefficients
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Classification of Inundated Areas
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TWS and Surface Storage Anomalies
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Conclusion (2/2)

1) The annual variations of the TWS changes over the central

2)

Congo during the period of 2007 — 2010 range between 21

km3 and 31 km3, and mostly controlled by surface storage
changes.

Our result is in contrast with a study over the Negro River
Basin (Frappart et al., 2011), where the amplitude of the
subsurface storage changes represents more than a third of
the amplitude of TWS changes.



